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Abstract

Chemical reaction networks are used to model interactions between
sets of objects called species. The theory is based in traditional chem-
istry, however, it has applications to mathematical biology and pattern
formation.
Our studies were focused on how these objects form steady-state ide-
als after being turned into systems of ordinary differential equations.
From there we created classifications of each distinct positive steady-
state variety form. This project was done as a part of the Pomona
Research in Mathematics Experience (DMS-2113782).

Definitions

Given a chemical reaction network, G, we can describe it
in terms of species, reactions, and complexes. For the network
below, our species are A, B, C while the complexes are A+C,
B + C, and 2B.

A + C B + C 2B
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Edges representing reactions are drawn as arrows, with their
positive reaction rates written as κi.
Steady-State Equations: ordinary differential equations
representing species’ change in concentration during reactions.
Steady-State: a tuple (x1, x2, ..., xn) ∈ Rn of species con-
centrations such that d

dtxi is zero for all species i.
Positive Steady-State Variety: the smallest variety con-
taining the intersection of the steady-state variety and the in-
terior of the positive orthant.

Motivating Question
How can we formally classify all positive steady-state vari-
eties of genuine, at-most-bimolecular, 2-species, 2-reaction
networks?

Looking for Patterns

For clarity, we will explain how to find the steady-state variety
of a network with this example.
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We construct each steady-state equation to equal the change
in concentration of a species in the network. They have one
term per reaction in the network, and the monomials are com-
posed by the reaction complex. Here, fA has coefficient 2κ1
since it has a net change of 2 across the reaction. Thus,

dxA

dt
= fA = 2κ1x

2
B + κ2xB

dxB

dt
= fB = −2κ1x

2
B − κ2xB

We find the steady-state variety by calculating the solutions
to fA, fB = 0. In this case, it is xB = 0, −κ2

2κ1
.

Figure: Steady-State Variety

Since κ1, κ2 ̸= 0, these lines
will never intersect for any
reaction-rate values and
will also never cross the
axis.

Despite its nonempty steady-state variety, this network has
an empty positive-steady state variety as neither component
intersects the positive orthant. This relationship is essential
for the results of this project.
For contrast, consider the network A + B 0

κ1

κ2
which

will have terms of the form xAxB plus a constant, creating a
hyperbola. Since it consists of a single component, the whole
figure composes the positive steady-state variety.

Figure: Hyperbolic Positive
Steady-State Variety

fA = −κ1xAxB + κ2
fB = −κ1xAxB + κ2

Our project is closely tied with applications to not only
chemical but other biological processes, and in these
contexts having negative values does not make sense. Hence,
our focus on the positive steady-state variety.

Results

After studying all 210 genuine, at-most-bimolecular, 2-species,
2-reaction networks, the following theorems were created to
classify the positive steady-state variety of each network based
on the chemical reaction network’s properties.

Horizontal & Vertical Lines (F2H2, 2023)

Given a chemical reaction network, the positive steady-
state variety will be non-axis horizontal or vertical line if
and only if the following criteria are true:

1 The columns of the stoichiometric matrix are
negative multiples of one another

2 One reactant complex is A + B and the other is
unimolecular

Figure: Steady-State Variety

A Vertical Line Network:
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Steady-State Equations:

fA = 0
fB = κ1xB − κ2xAxB

Theorem on Slanted Lines (F2H2, 2023)

Given a chemical reaction network, the positive steady-
state variety will be a line through the origin if and only
if the following hold:

1 The columns of the stoichiometric matrix are
negative multiples of each other

2 The two reactant complexes have the same
number of molecules

3 The supports of the reactant complexes are
nonempty and distinct (not necessarily disjoint).

Figure: Steady-State Variety

A Slanted Line Network:

A + B 2B
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Steady-State Equations:

fA = −κ1xAxB + κ2x
2
B

fB = κ1xAxB − κ2x
2
B

Theorem on Parabolas (F2H2, 2023)

Given a chemical reaction network, the positive steady-
state variety will be a parabola if and only if the following
hold:

1 One reactant complex is bimolecular and the
other is monomolecular

2 The supports of the reactant complexes are
disjoint

3 The columns of the stoichiometric matrix are
negative linear multiples of each other

Proof Outline (Forwards Direction)
Let x, y represent xA, xB, then we have V (y−kx2) = V (fA)∩V (fB).
Since G is at-most-bimolecular, ⇒ deg(fA), deg(fB) ≤ 2, and

fA = c1(y − kx2)
fB = c2(y − kx2)

With x2, y exactly ⇒ G must have a bimolecular complex and a
monomolecular complex which are disjoint (1), (2). When neither
c1, c2 ̸= 0, fB = c2

c1
fA. From these equations,

fA = ak1y − bk2x
2

fB = ck1y − dk2x
2

we can make the matrix N

det N = det

a −b
c −d

 = −ad + bc = −a


c2

c1
b

 + b


c2

c1
a

 = 0.

With det N = 0, the columns must be negative linear multiples (3).

Parabola Network Example:

A 2B

2B A
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Steady-State Equations:

fA = −κ1xA + κ2x
2
B

fB = 2κ1xA − 2κ2x
2
B Figure: Positive Steady-State Variety

Theorem on Hyperbolas (F2H2, 2023)

Given any chemical reaction network, the positive steady-
state variety will be a hyperbola if and only if all of the
following hold:

1 The reactant complexes are A + B and 0
2 The columns of the stoichiometric matrix are

negative linear multiples of each other.

Future Work

• Investigating and classifying other types of chemical
reaction networks, especially the following:

• not at-most bimolecular networks
• 3-species, 2-reaction networks
• n-species and higher networks where n is at

least 4
• Considering other applications of these techniques,

such as complicated biochemical reactions.
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